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Detecting instabilities in �ows of viscoelastic �uids
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SUMMARY

There is a growing interest in developing numerical tools to investigate the onset of physical instabilities
observed in experiments involving viscoelastic �ows, which is a di�cult and challenging task as the
simulations are very sensitive to numerical instabilities. Following a recent linear stability analysis
carried out in order to better understand qualitatively the origin of numerical instabilities occurring in
the simulation of �ows viscoelastic �uids, the present paper considers a possible extension for more
complex �ows. This promising method could be applied to track instabilities in complex (i.e. essentially
non-parallel) �ows. In addition, results related to transient growth mechanism indicate that it might
be responsible for the development of numerical instabilities in the simulation of viscoelastic �uids.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The maximum processing rate that can be obtained in typical polymer processing opera-
tions is often limited by the occurrence of elastic instabilities, which are not present in the
corresponding �ow of Newtonian �uids. It is therefore interesting to understand the driving
mechanisms and to determine both spatial and temporal characteristics of these instabilities.
To do so, their onsets in a number of special test benchmarks that model individual ele-
ments of complex industrial processing geometries have been studied and well documented
[1–6]. In the past decade, rather extensive research work has been carried out in order to
come to a better understanding of the mechanism driving the inception of instabilities. The
most successful investigations have been achieved so far with experiments although signi�cant
progress has also been reported with theoretical stability analyses. Detecting such instabilities
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with large computational simulations remains a very di�cult and challenging task even with
today’s computer resources [7].
Stability analyses are very often conducted in order to establish if a steady solution can be

maintained with superposed perturbations. Analytical methods used for stability analysis are
described in numerous textbooks [8–11]. Three types of analysis are usually performed. They
are, respectively, aimed at determining conditions under which a process is absolutely unstable
no matter what perturbation amplitude is selected (non-linear stability analysis), evaluating
the e�ect of a small-amplitude perturbation when approaching the conditions of an absolute
instability (linear stability analysis) and establishing the conditions of absolute stability without
considering the perturbation amplitude. Either the stability of the constitutive equation itself
e.g. References [12, 13] or the in�uence of the discretization method on the stability [14–16]
can be studied.
In classical linear stability, analyses aimed at determining the inherent stability properties

of constitutive equations, speci�c Fourier expansions of the perturbations in the streamwise
direction are considered e.g. References [12, 17]. This results in solving eigenvalue spectra
with rather large number of Chebyshev polynomials (typically 100). A complementary analy-
sis proposed recently [15, 16] has been carried out in order to better understand qualitatively
the origin of numerical instabilities occurring in the simulation of the �ows viscoelastic �u-
ids [16, 18]. It focussed on computing the eigenvalue spectra generated by the discretization
itself. Only spatial discretizations with a limited number of grid points or polynomial order
corresponding to the values used for the simulation of complex problems with the spectral
elements were considered in the corresponding study. The present paper considers a possible
extension of this linear stability analysis for more complex �ows since no explicit construction
of matrices occurring in the resulting generalized eigenvalue problem is required. Numerical
investigation of the stability of complex viscoelastic �ows is an emerging domain of research
e.g. References [7, 19]. Techniques based on implicitly restarted Arnoldi methods (IRAM)
[20, 21] enabling a certain number of leading eigenvalues to be determined have been pro-
posed to investigate the stability of complex �ows e.g. References [7, 22]. We present in
Section 3 an implementation of such a technique.
Transient growth is sometimes attributed to the existence of degenerate or nearly degen-

erate eigenvalues of the linearized stability problem. Non-normality associated to the non-
commutability with its adjoint of the linearized di�erential operator can be held responsible
for the linear growth of perturbations, which may lead to the transition from laminar to tur-
bulent �ow for Newtonian �uids [23, 24] or to transient phenomena in viscoelastic �ows e.g.
[19, 25]. Transient growth can also be associated with the development of numerical instabil-
ities during transient viscoelastic �ow simulations [14, 15] as described in Section 4.
As noticed, most, if not all, numerical investigations of instabilities developing in complex

(i.e. essentially non-parallel) �ows of viscoelastic �uids have been carried out with low-order
�nite element or volume methods. High-order accurate methods possessing suitable properties
of low dispersion and di�usion are certainly potentially relevant candidates to accomplish
such studies as shown for Newtonian �ows e.g. by Leriche [26] with a spectral Chebyshev-
tau method for a three-dimensional (3D) lid-driven cavity or Fischer [27, 28] with conforming
and non-conforming Legendre spectral element methods for various complex time-dependent
problems. The feasibility of using spectral element methods to simulate viscoelastic �ows has
been demonstrated by several authors e.g. References [18, 29, 30]. We have considered such
a method for the spatial discretization of the problems discussed in this paper.
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The paper is organized as follows. The basic and linearized equations leading to the deriva-
tion of a generalized eigenvalue problem are introduced in Section 2. After presenting in
Section 3.1 the Arnoldi-based computational method enabling us to determine speci�c eigen-
values and proceed to linear stability analysis of �ows without drastic restriction on mesh
size, we discuss results obtained with such analyses in Section 3.2. Possible applications to
complex �ows are described in Section 3.3. Some study of the transient growth mechanism
is reported in Section 4.

2. LINEARIZATION OF THE FLOW EQUATIONS

In this section, we present the conservation and constitutive equations in non-dimensional form,
derive the related linearized equations and express the corresponding generalized eigenvalue
problem for �ows of Oldroyd-B �uids as an example. The methodology can be readily applied
to any type of viscoelastic �uid with a constitutive equation written in di�erential form. Other
examples can be obtained in Reference [16].
Let us recall that the set of equations associated with the Oldroyd-B model in non-

dimensional form

∇ · v = 0 (1)

@v
@t
= −Re(v · ∇)v −∇p+ R�∇2v+∇ · � (2)

We
[
1
Re
@�
@t
+ (v · ∇)�− � · (∇v)T −∇v · �

]
+ � = 2(1− R�)D (3)

In the previous equations, the velocity v, co-ordinates x, viscoelastic stress �, pressure p
and time t are, respectively, scaled with the following quantities: V (reference velocity),
Lr (reference length), S = � tV=Lr ; P = S; T = �L2r =� t , where � and � t are the �uid density
and (total) viscosity. The quantity R� = �s=� t is the ratio of the solvent viscosity over the total
viscosity. The non-dimensional numbers Re = �VLr=� t and We = �V=Lr are, respectively, the
Reynolds and Weissenberg numbers where � is the relaxation time of the viscoelastic �uid.
In order to perform this analysis, the set of equations (1)–(3) is linearized by looking for

a solution composed of a perturbation (p1; v1; �1) added to a known solution of the system of
equation (p0; v0; �0) (steady 2D base �ow):

p=p0 + p1; v= v0 + v1; �= �0 + �1 (4)

which induces the following set of equations if the �rst-order perturbation terms are retained:

∇ · v1 = 0 (5)

@v1
@t
=−Re[(v0 · ∇)v1 + (v1 · ∇)v0]−∇p1 + R�∇2v1 +∇ · �1 (6)

−2(1− R�)D(v1) + �1 +We
[
1
Re
@�1
@t
+ (v0 · ∇)�1 + (v1 · ∇)�0

]

−We[�1 · (∇v0)T −∇v0 · �1 − �0 · (∇v1)T −∇v1 · �0]= 0 (7)
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where

D(v1)= 1
2 (∇v1 + (∇v1)T) (8)

Introducing a perturbation of the type

(p1 =P1evt ; v1 =V1evt ; �1 =T1evt) (9)

leads to the following set of equations:

∇ ·V1 = 0 (10)

vV1 =−∇P1 + R�∇2V1 − C(v0;V1) +∇ · T1 (11)

v
We
Re
T1 = − T1 − NLT (v0; �0;T1)− NLV (�0;V1) (12)

where

C(v0;V1)=Re[(v0 · ∇)V1 + (V1 · ∇)v0] (13)

NLT (v0;T1)=We[(v0 · ∇)T1 − T1 · (∇v0)T −∇v0 · T1] (14)

NLV (�0;V1)=We[(V1 · ∇)�0 − �0 · (∇V1)T −∇V1 · �0]− 2(1− R�)D(V1) (15)

which can be written in operator-matrix form

vBx=Ax (16)

where xT = [P1;V1;T1]T:

v



0 0 0

0 (I) 0

0 0
We
Re
(I)






P1

V1

T1




=




0 ∇ · (I) 0

−∇(I) −C(v0; I) + R�∇2(I) ∇ · (I)
0 −NLV (�0; I) −(I)− NLT (v0; I)






P1

V1

T1


 (17)

where (I) represents the identity operator. Introducing the spectral element spatial discretiza-
tion at this stage after expressing previous equations in weak form, leads to the generalized
eigenvalue problem

vBhX =AhX (18)
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i.e. explicitly

v



0 0 0

0 M 0

0 0
We
Re
M






P

V

T


 =



0 D 0

DT K AVT

0 ATV ATT






P

V

T


 (19)

where P; V and T , respectively, represent the vectors associated with the degrees of
freedom at the pressure nodes, the two components of the velocity and the three compo-
nents of the symmetric viscoelastic stress tensor. The matrix M is the mass matrix. The
matrices D; DT; K result, respectively, from the discretization of the velocity divergence in
the continuity equation, pressure gradient and Laplacian. The matrices AVT ; ATV and ATT
correspond, respectively, to the discretization of the viscoelastic stress divergence in the mo-
mentum equation, velocity and viscoelastic stress operators NLV and NLT in the constitutive
equation.

3. INVESTIGATING THE STABILITY OF FLOWS

3.1. Computational method

The previous problem can be solved in order to perform a linear stability analysis of the
viscoelastic �ow. In particular, the in�uence of the discretization method on the stability can
be investigated [15, 16]. For complex �ows, it is not a�ordable to build explicitly the matrices
of the eigenvalue problems and use a classical QZ algorithm to solve the entire spectrum as
this can be done for simple �ows [15, 16]. Leading eigenvalues can be computed via an
Arnoldi method applied to a modi�ed eigenvalue problem [31] as shown below. No explicit
construction of matrices is required by this method, since only matrix–vector multiplications
are involved as emphasized by Tuckerman et al. e.g. References [32, 33]. It is thus possible
to take advantage of the e�ciency of the tensor-product factorization involved in the spectral
element method. Using such a method for linear stability analysis with the aim of validating
the physical onset of an instability during simulations is a complementary technique to direct
simulations. It also enables the invariance of the instability characteristics (in particular the
corresponding frequencies) with mesh re�nement to be checked.
We will brie�y present the basic concept of Arnoldi’s method e.g. Reference [31]. As

shown in Section 2, the linear stability problem can be reduced to a generalized eigenvalue
problem of the type: vBX =AX , which in turn can be reduced to the simple eigenproblem
CX =!X by using a shift-and-invert technique so that C≡ (A− vsB)−1B and !=1=(v− vs)
where vs is a relevant real or complex number chosen to eliminate dominant eigenvalues
of the generalized eigenvalue problem with very large moduli and to determine eigenvalues
located in the vicinity of vs.
Eigenvectors X are approximated by their projection X (m) onto a set of m orthonormal basis

vectors Vi (m�dim(X )):

X (m) =
m∑
i=1
x̃(m)i Vi (20)
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The coe�cients x̃(m)i are determined by imposing that

V Tj · (CX (m) − !̃(m)X (m))=0; j=1; : : : ; m (21)

where !̃(m) is an approximation of an eigenvalue ! of C. The last equation can be written
in matrix form

[(V(m))TCV(m) − !̃(m)(V(m))TV(m)]X̃ (m) = 0 (22)

where the matrix V(m) is built by taking its columns identical to the m vectors Vi. The
components of the vector X̃ (m) are the coe�cients x̃(m)i . The m × m matrix (V(m))TCV(m) is
denoted by H(m).
The vectors Vl are determined by the following sequence:

V̂l+1 =CVl −
l∑
k=1
(V Tk CVl)Vk (23)

Vl+1 =
V̂l+1√
V̂ Tl+1 · V̂l+1

(24)

An estimate of the norm of the residual corresponding to the jth eigenvalue is obtained by

Resj= ‖CX (m)
j − !̃(m)j X (m)

j ‖=
√
V̂ Tm+1 · V̂m+1 |ETmX̃ (m)

j | (25)

where ETm is a vector of dimension m such that

ETm=(0; 0; : : : ; 0; 1) (26)

This algorithm is used until the residual norm for each eigenvalue is lower than a prede�ned
threshold.
To summarize, Arnoldi’s method consists of building an orthogonal system from the Krylov

vectors V1;CV1; : : : ;Cm−1V1 with a chosen vector V1 of unit Euclidian norm. It enables approx-
imations (V(m)X ( j)

H ; !̃( j)) (16j6m) of some eigenpairs of the matrix C to be obtained, where
X ( j)
H is an eigenvector of H(m). The matrix H(m) can be easily diagonalized e.g. by using a
QR algorithm.
If applied as described above, the orthonormalization process may become polluted by

cancellation errors and more sophisticated techniques like the modi�ed Gram–Schmidt re-
orthogonalization procedures have been recommended [34]. Accordingly, we have used the
IRAM subroutine dnaupd of the ARPACK library [21] in our computational code. This tech-
nique allows the often excessive requirements of the original algorithm presented before to
be overcome, from both storage and computational points of view. It combines the so-called
implicitly shifted QR scheme with a k-step Arnoldi factorization to obtain a truncated form
of the implicitly shifted QR-iteration [21]. Although the option of explicitly building the ma-
trix C for problems of small sizes has been retained, we have taken advantage of the genuine
ability of the spectral element method to compute matrix–vector products without explicit
matrix formulation. This subroutine has been used successfully for solving eigenvalues of the
simple Couette and Poiseuille benchmark problems as shown in Section 3.2.
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As presented in Section 2 (cf. Equations (5)–(7)), the set of linearized conservation and
constitutive equations can be expressed with a formal equation of the type

B
@X
@t
=AX (27)

where X T = (p; v; �) and A and B are two operators. After discretizing in space, one obtains
the equation relative to the semi-discrete problem Equation (16). Applying a time discretization
procedure in addition to the space discretization may be formally described by an operator
CT de�ned by

X n+1 =X ((n+ 1)�t)=CTX n (28)

where X n is the vector of all degrees of freedom at time step n. Applying this operator is
nothing but computing a time step when proceeding to numerical simulations. For instance,
using the combination of backward di�erence formula (BDF) and extrapolation (EX) schemes
for implicit linear (e.g. pressure and viscous) and explicit (e.g. convective) terms together with
a space discretization with spectral elements [16, 18] leads to

−DVn+1 =0 (29)

(
�si
�t

)
MVn+1 −DTPn+1 + R�KVn+1 +VETn+1

=
1
�t

si∑
q=1
�si−qMV

n+1−q −
se−1∑
r=0
�r ReC(Vn−r) (30)

(
We
Re�t

�si + 1
)
MTn+1 =

We
Re�t

si∑
q=1
�si−qMT

n+1−q +
se−1∑
r=0
�rNL(Tn−r ; V n−r) (31)

where an extrapolation method of order se has been used to determine the value of the non-
linear term at time step n+1. The associated BDF scheme is of order si. The coe�cients �i and
�j are dependent of the orders of each method, e.g. for a BDF2=EX2 (si=2, se=2) scheme:
�0 = 2, �1 =−1, �0 =− 1

2 , �1 = 2, �2 =
3
2 . We have introduced a shorthand notation where V ,

P and T represent the full vectors of all velocity, pressure and viscoelastic stress perturbation
unknowns. The block diagonal matrices M and K are, respectively, composed with d block
matrices M and K where d is the dimension of the problem. The matrix D corresponds to
the full divergence operator and DT to the full gradient operator. The terms labelled with
the symbols C, VE and NL correspond to the convection of velocity, the divergence of the
viscoelastic stress tensor and the non-linear terms in the constitutive equation.
An estimate of the leading eigenpairs of the linearized problem can be obtained after

applying the operator CT a large number of times on some initial vector X 0. After a certain
number of applications i.e. at some time Tl, the resulting vector will contain only the e�ects
of the leading eigenvectors after getting rid of the in�uence of the most quickly decaying
eigenvectors. At this stage, m additional time steps or operator applications are carried out
in order to generate vectors X (1) =X (Tl + �t); : : : ; X (m) =X (Tl + m�t). This set of vectors
can be processed with the Arnoldi method described previously in order to generate a set of
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orthonormal vectors Vj (16j6m) and therefore a matrix H(m) from which approximations of
the leading eigenpairs can be obtained after diagonalization. The eigenvalues � of the matrix
H(m) and those v of combined operators B and A in Equation (27) are related by v≈ e��t .
An e�cient alternative is to apply the Arnoldi method to the modi�ed problem

X n+1 = (CT −�sI)−1X n (32)

or equivalently

(CT −�sI)X n+1 =X n (33)

where I is the identity operator. The corresponding eigenvalues � can be easily related to
those of the original formulation Equation (27): v≈ e(1=�+�s)�t . The quantity �s is a given real
or complex number in the vicinity of which eigenvalues are searched for. The advantage of
this approach over the previous one is that convergence towards eigenvalues close to �s is
faster, thus enabling the part of the spectrum close to �s to be determined. Taking the inverse
of operator CT −�sI enables us to get rid of dominant eigenvalues i.e. with large moduli. If
�s is complex, Equation (33) must be decomposed into its real and imaginary parts:

(CT − (�s)rI)X n+1r + (�s)iX n+1i =X nr

(CT − (�s)rI)X n+1i − (�s)rX n+1r =X ni
(34)

Applying the operator CT is Equation (33) is equivalent to proceeding one step of time
integration backwards.
Let us emphasize that computing the quantity CTX n+1 is actually carried out by ultimately

solving a system of the type EY=F to which a conjugate gradient method is applied. No
explicit costly construction of the matrix E is required due to the e�cient implementation of
the tensor-product factorization involved in the spectral element method [35].

3.2. Results

Actually, the process described in the previous section is embedded in the IRAM algorithm.
We will not give a presentation of this method here and refer the reader to relevant papers
e.g. References [20, 22, 36]. We have implemented the technique described previously with
success for simple test cases like the Couette and Poiseuille �ows of viscoelastic �uids (see
Figures 1 and 2). The linear stability of these �ows has been studied theoretically by various
authors e.g. [13, 17] and in particular by Wilson et al. [12] for Oldroyd-B �uids. Two groups
of eigenvalues with real parts, respectively, equal to −1=We and −1=R�We can be clearly
identi�ed and has also been reproduced numerically with a spectral element discretization
[15, 16].
Examples of eigenvalues computed with the IRAM technique are given in Figures 3 and 4,

respectively, for the Poiseuille and Couette �ows of Oldroyd-B �uid (R�=0:25). Eigenvalues
determined with a QZ algorithm used to compute the spectra presented in References [15, 16]
related to the generalized eigenvalue problem described in Section 2 (Equation (18)) and for
which the matrices Ah and Bh were explicitly built, have also been displayed as a reference.
The matrix size of the corresponding eigenvalue problem is 218× 218 for a crude mesh with
one element (polynomial orders equal to Nx=4 and Ny=7, respectively, in the streamwise
and cross-stream directions). Filled black delta and grey gradient triangles correspond to
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Figure 1. Couette �ow in a planar channel.

Figure 2. Poiseuille �ow in a planar channel.

computations with the IRAM-based technique when the respective number of eigenvalues has
been, respectively, �xed to 10 and 25 whereas empty squares are related to the QZ algorithm.
Four complex shifts have been introduced for each problem. They have been selected so
that their real parts are equal to either −1=We or −1=R�We in order to be able to check
that eigenvalues in the two characteristic sets could be accurately determined with the IRAM
method. It can be seen on plots for both Poiseuille and Couette �ows in Figures 3 and 4
showing the computed local spectra for the two numbers of eigenvalues (m=10 and 25) that
accurate results have been obtained with this algorithm provided that a small set of eigenvalues
is used (typically m=10 is su�cient). It is therefore not necessary to retain more modes in
the computations.

3.3. Extension to complex �ows

This method could be applied in the future to determine in particular the most dangerous
eigenvalues of complex viscoelastic (and clearly also Newtonian) �ows and would therefore
provide a useful tool to address BiGlobal and possibly TriGlobal instabilities [37].
In a recent paper, Smith et al. [7] have presented such numerical methods based on

�nite elements for the analysis of the stability of two-dimensional steady viscoelastic �ows
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Figure 3. Part of the eigenvalue spectra for the Poiseuille �ow of an Oldroyd-B �uid (We=2:0,
R�=0:25, 1 element Nx=4, Ny=7). Filled black delta and grey gradient triangles correspond to eigen-
values computed with the IRAM-based technique with, respectively, 10 and 25 retained eigenvalues.
Empty square symbols are relative to the data computed with the QZ algorithm. Complex shifts equal to:

−0:5 + i0:1 (a), −2:0 + i0:1 (b), −0:5 + i0:001 (c), −2:0 + i0:001 (d).

to small amplitude, two-dimensional and three-dimensional disturbances. In order to reduce
the problem size, they restricted their study to viscoelastic stress perturbations. They tested
two di�erent time integration schemes to compute the evolution of disturbances: a �-method
operator splitting technique [19] and a fourth-order Runge–Kutta method. As for as the stabil-
ity of the spacial discretization is concerned, both SUPG and DG techniques have been used
in addition to the standard Galerkin method. Although they resorted to an implicit technique
to compute the steady-state solutions, time-dependent simulations have been carried out by
decoupling the full problem into a modi�ed Stokes problem and an evaluation of the consti-
tutive equation, which is basically the type of technique that we have used in our simulations
[16, 18]. Smith et al. applied the IRAM method [21] mentioned previously.
They validated their formulation by applying it to the circular Couette �ow of an Oldroyd-B

�uid for which a well-documented list of transitions to three-dimensional time-periodic state
occurring at given values of the Weissenberg number has been established e.g. [38]. In ad-
dition, they underlined the dissipative e�ects of the SUPG method, which strongly modi�es
the eigenvalue spectrum compared to the one computed with a classical Chebyshev method.
Modes were not only shifted but could also disappear. Classical Galerkin (when stable) and
DG techniques provided signi�cantly better results.
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Figure 4. Part of the eigenvalue spectra for the Couette �ow of an Oldroyd-B �uid (We=10:0, R�=0:25,
1 element Nx=4, Ny=7). Filled black delta and grey gradient triangles correspond to eigenvalues
computed with the IRAM-based technique with, respectively, 10 and 25 retained eigenvalues. Empty
square symbols relate to the data computed with the QZ algorithm. Complex shifts equal to: −0:4+ i0:1

(a), −0:1 + i0:1 (b), −0:4 + i0:001 (c), −0:1 + i0:001 (d).

In a second step, the method was applied to the stability of the �ow around a closely
spaced linear array of cylinders. It was emphasized that under-resolution of the continuous
spectrum lead to treacherous numerical time-periodic instabilities that were apparently conver-
gent when direct time integration was used. The Arnoldi-based method enabled the authors
to diagnose that the dominant mode on a given mesh became stable and was superseded by
a new dominant mode with a higher wave number when the mesh was re�ned. In contrast to
the circular Couette �ow, for which the discrepancies between the modes computed with the
SUPG and DG methods were reduced with mesh re�nement, the temporal or spatial structure
of disturbances obtained with the two discretizations never matched no matter how re�ned the
mesh was. This emphasizes the fact that the structure of the long-time perturbation is very
sensitive to spatial discretization. The �ow was found stable if the mesh was properly re�ned
for the range of investigated Weissenberg numbers (We6 1:5) with both methods.
They also considered the stability of the �ow of an Oldroyd-B �uid around a con�ned cylin-

der when submitted to three-dimensional perturbations. The same problem has been studied
experimentally by McKinley et al. [39]. As opposed to experimental results, no transition from
the two-dimensional base �ow to a three-dimensional cellular structure in the cylinder wake
has been detected numerically in the range of investigation (We6 0:75). The reason for this
discrepancy is not clear. However, it is suspected that the steady-state stress distribution in the
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�ow obtained with a single-mode Oldroyd-B model is quite di�erent from the experimental
case. Subsequently, a more sophisticated constitutive model would be required to establish
a more relevant comparison with experiments. Whether the Oldroyd-B constitutive equation
is able to reproduce �ow transitions in complex �ows is still an open question. The range
of investigation has only been restricted by numerical limitations due to the impossibility of
solving properly the steady-state �ow at higher Weissenberg numbers. If this upper limit could
be extended, �ow transition might appear with an Oldroyd-B �uid at higher values of We.
The work of Smith et al. emphasizes the di�culty of detecting physical instabilities with

numerical simulations of complex viscoelastic �ows and the need for complementary tech-
niques based on stability analysis to investigate the possible evidence of numerically induced
instabilities.

4. TRANSIENT GROWTH OF PERTURBATIONS

Following investigations of possible linear mechanisms related to the transient growth of
in�nitesimal perturbations for the induction of transition between laminar and turbulent regimes
in Newtonian shear �ows e.g. References [23, 24], the in�uence of the non-normality of the
linearized di�erential operators present in the equations describing the �ow of viscoelastic
�uids has been recently studied e.g. References [19, 25]. Non-normality of the eigenvectors
is a consequence of the non-commutability of the linearized di�erential operators with their
adjoints as shown e.g. in References [23, 25], and results in transient growth if disturbances
become perpendicular to the eigenvectors (mis�t disturbances). If the amplitude growth is
large enough, non-linear e�ects come into play possibly leading to further recreation of mis�t
disturbances in a positive feedback process.
Based on the analysis of Grossmann [23] for Newtonian �uids, Atal�k and Keunings [25]

have provided a simpli�ed theory of possible non-normality e�ects due to the terms related to
the advection and deformation of the base Couette �ow of a UCM or Oldroyd-B �uid by the
perturbation as We increases: Re(v1 · ∇)v0 in Equation (6) and We[(v1 · ∇)�0 − �1 · (∇v0)T −
∇v1 · �0] in Equation (7). Although they did not mention it explicitly, the convective term
(v1 · ∇)�0 in the constitutive equation vanishes because the steady-state viscoelastic stress
tensor does not vary spatially for the Couette �ow of such �uids. The terms concerned with
the advection and deformation of the perturbation �elds by the base �ow do not determine
the growth or decay of the perturbations since they are globally energy conserving.
We have noticed by carrying out numerical simulations of these benchmark problems with

the non-linearized conservation and constitutive equations that the instabilities were generated
either by the convective terms or the terms involving the velocity gradients in the constitutive
equation by systematically replacing each term in turn by its analytical steady-state expression
thus suppressing its e�ect on the perturbation. Although numerical instabilities are �rst driven
by the convective term, they may also arise even if it is prescribed through the velocity
gradient terms in agreement with the analysis of Atal�k and Keunings.
Simulations using linearized equations have also been performed in order to check that

similar results were obtained for small amplitude perturbations (typically of the order of
10−3 times the steady-state reference value). Above that level non-linear e�ects could be
observed in agreement with the �ndings of Sureshkumar et al. [19] for the Couette �ow
of UCM and Oldroyd-B �uids and for the �ow of an Oldroyd-B �uid past an array of
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Figure 5. Temporal variations of the relative error on the velocity ‖v − vanalytical‖E=‖vanalytical‖E
(left) and on the viscoelastic stress tensor ‖�−�analytical‖E=‖�analytical‖E for the Poiseuille �ow of an

Oldroyd-B �uid (Euclidian norms).

cylinders. The in�uence of transient growth on the numerical stability of our simulations as
the Weissenberg number increases can be readily observed in Figure 5 for a Poiseuille �ow
of an Oldroyd-B �uid (R�=0:25, time step �t=0:01). A single element was used for the
discretization with polynomial orders equal to Nx=4 in the streamwise direction and Ny=7
in the cross-stream direction. At low Weissenberg numbers, the decay of the perturbation after
some short period can be observed. The action of several modes through non-normality and
subsequent non-linear e�ects can then be identi�ed as We increases after some time. The left
and right plots, respectively, correspond to relative errors of the velocity and viscoelastic stress
based on Euclidian norms. Analytical expressions of these quantities can be easily obtained
for the steady Poiseuille �ows of Oldroyd-B �uids [16].
To demonstrate non-normality among the eigenvectors, Figure 6 shows a typical matrix

�lled with the values of some debunching (as opposed to overlap) function of the normalized
eigenvectors corresponding to the most dangerous eigenvalues for the Poiseuille �ow of an
Oldroyd-B �uid for We=2:0. By debunching, we mean that no large bunches of eigenvectors
are pointing into speci�c mean directions. A single element was used for the discretization
with polynomial orders equal to Nx=4 in the streamwise direction and Ny=7 in the cross-
stream direction. Cell (i; j) corresponds to the value of the debunching function f(Xi; Xj)=1−
1
2 (Xi ·X ∗

j +Xj ·X ∗
i ) of the ith and jth eigenvectors Xi and Xj, where X

∗ denotes the complex
conjugate of X . Eigenvalues are ordered according to decreasing real parts. Darker cells
correspond to larger overlap of eigenvectors. If all eigenvectors were orthogonal, only the
cells on the diagonal would be black. White cells indicate that the eigenvectors are orthogonal.
It can be seen that non-normality of the eigenvectors does induce some overlap or bunching
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Figure 6. Matrix of the debunching function f(Xi; Xj) of the normalized eigenvectors corre-
sponding to the most dangerous eigenvalues for the Poiseuille �ow of an Oldroyd-B �uid

(Nx=4; Ny=7; L=h=8; R�=0:25; We=2:0) (see text for the de�nition of f).

among the eigenvectors. This e�ect is even stronger for larger values of We as expected. This
is visible in Figure 7 for We=10:0 where a large amount of overlap can be observed between
the eigenvectors (low values of the debunching function).

5. CONCLUSION

Being able to investigate instabilities numerically is one of the most challenging topic in the
�eld of viscoelastic �ow research. In particular, one must be able to distinguish between true
physical and numerically induced instabilities which may appear in simulations. To this end, it
is necessary to develop tools that would enable one to diagnose the type and characteristics of
detected perturbations in the �ows. This paper points out to such a method, which enables one
to proceed to such investigation. Thus, the implementation of a technique based on Arnoldi’s
method to determine the leading eigenvalues relative to complex �ows has been presented.
Tracking such instabilities requires the use of accurate techniques. As far as the spatial dis-

cretization is concerned, the most popular methods have been by far based on �nite volumes
and �nite elements. Recently, alternative techniques based on Legendre spectral element meth-
ods have been applied with success to simulate viscoelastic �ows e.g. References [18, 29, 30].
They combine the ability to treat complicated geometries like the classical (low-order) �nite-
element methods with the accuracy of high-order approximation polynomials encountered in
spectral methods.
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Figure 7. Matrix of the debunching function f(Xi; Xj) of the normalized eigenvectors corre-
sponding to the most dangerous eigenvalues for the Poiseuille �ow of an Oldroyd-B �uid

(Nx=4; Ny=7; L=h=64; R�=0:25; We=10:0) (see text for the de�nition of f).

The proposed method bene�ts from the fact that no implicit construction of the matrices
appearing in matrix–vector products is required as ensured by the tensor-product factorization
inherent in e�cient algorithms using spectral elements for the spatial discretization. Although
we have only tested it on simple problems, it will be applied to large-scale problems like e.g.
the �ow through a contraction in the future.
Following a study of the onset of numerical instabilities in simulations of viscoelastic �ows,

e�ects of transient growth due to non-normality of the operators involved in the conservation
and constitutive equations have been shown to be a potential source of numerical instability
fostered by the discretization.
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